Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 991
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23582, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568853

RESUMO

Breast cancer (BC) stands as a prominent contributor to global cancer-related mortality, with an increasing incidence annually. This study aims to investigate AGRN gene expression in BC, as well as explore its influence on the tumor immune microenvironment. AGRN displayed a pronounced upregulation in BC tissues relative to paracancerous tissues. Single-cell RNA analysis highlighted AGRN-specific elevation within cancer cell clusters and also showed expression expressed in stromal as well as immune cell clusters. AGRN upregulation was positively correlated with clinicopathological stage and negatively correlated with BC prognosis. As revealed by the in vitro experiment, AGRN knockdown effectively hinders BC cells in terms of proliferation, invasion as well as migration. AGRN protein, which may interact with EXT1, LRP4, RAPSN, etc., was primarily distributed in the cell cytoplasm. Notably, immune factors might interact with AGRN in BC, evidenced by its discernible associations with immunofactors like IL10, CD274, and PVRL2. Mass spectrometry and immunohistochemistry revealed that the reduction of AGRN led to an increase in CD8+ T cells with triple-negative breast cancer (TNBC). Mechanistically, the connection between TRIM7 and PD-L1 is improved by AGRN, acting as a scaffold, thereby facilitating the accelerated degradation of PD-L1 by TRIM7. Downregulation of AGRN inhibits BC progression and increases CD8+ T cell recruitment. Targeting AGRN may contribute to BC treatment. The biomarker AGRN, serving as a therapeutic target for BC, emerges as a prospective avenue for enhancing both diagnosis and prognosis in BC cases.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Humanos , Linfócitos T CD8-Positivos , Estudos Prospectivos , Neoplasias de Mama Triplo Negativas/metabolismo , Biomarcadores Tumorais/genética , Microambiente Tumoral , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Medicine (Baltimore) ; 103(15): e37411, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608087

RESUMO

BACKGROUND: Colonoscopy is a commonly performed gastroenterological procedure in patients associated with anxiety and pain. Various approaches have been used to provide sedation and analgesia during colonoscopy, including patient-controlled analgesia and sedation (PCAS). This study aims to evaluate the feasibility and efficiency of PCAS administered with propofol and remifentanil for colonoscopy. METHODS: This randomized controlled trial was performed in an authorized and approved endoscopy center. A total of 80 outpatients were recruited for the colonoscopy studies. Patients were randomly allocated into PCAS and total intravenous anesthesia (TIVA) groups. In the PCAS group, the dose of 0.1 ml/kg/min of the mixture was injected after an initial bolus of 3 ml mixture (1 ml containing 3 mg of propofol and 10 µg of remifentanil). Each 1 ml of bolus was delivered with a lockout time of 1 min. In the TIVA group, patients were administered fentanyl 1 µg/kg, midazolam 0.02 mg/kg, and propofol (dosage titrated). Cardiorespiratory parameters and auditory evoked response index were continuously monitored during the procedure. The recovery from anesthesia was assessed using the Aldrete scale and the Observer's Assessment of Alertness/Sedation Scale. The Visual Analogue Scale was used to assess the satisfaction of patients and endoscopists. RESULTS: No statistical differences were observed in the Visual Analogue Scale scores of the patients (9.58 vs 9.50) and the endoscopist (9.43 vs 9.30). A significant decline in the mean arterial blood pressure, heart rate, and auditory evoked response index parameters was recorded in the TIVA group (P < 0.05). The recovery time was significantly shorter in the PCAS group than in the TIVA group (P = 0.00). CONCLUSION: The combination of remifentanil and propofol could provide sufficient analgesia, better hemodynamic stability, lighter sedation, and faster recovery in the PCAS group of patients compared with the TIVA group.


Assuntos
Agnosia , Propofol , Humanos , Remifentanil , Midazolam , Analgesia Controlada pelo Paciente , Fentanila , Anestesia Intravenosa , Anestesia Geral , Colonoscopia , Dor
3.
Gastroenterol Res Pract ; 2024: 5591298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634107

RESUMO

Objective: This study is aimed at investigating the expression of Met and YAP in gastric cancer and their impact on clinical prognosis. Methods: Tissue samples and clinical data were collected from 89 patients with gastric cancer. Immunohistochemistry was performed to quantify the expression of Met and YAP using tissue microarray. The correlation between the expressions of Met, YAP, and clinicopathological characteristics of patients was determined using a chi-square test. Survival analysis was conducted using the Kaplan-Meier method, while multivariate survival analysis was performed using the Cox proportional hazard model. Bioinformatics analysis was carried out by downloading chip data from TCGA. Results: The expression levels of both Met and YAP were significantly higher in gastric cancer tissues compared to adjacent tissues (P < 0.001). Met expression showed a positive association with P53 and CD133, whereas YAP expression correlated positively with tumor grade and CD133 (P < 0.05). Pearson's analysis revealed a significant correlation between Met expression and VEGFR as well as CD133, while YAP expression correlated with Ki67 and VEGFR (P < 0.05). Patients with high levels of both Met and YAP exhibited decreased survival time (P < 0.01). Furthermore, Met expression, N stage, and VEGFR were identified as independent risk factors for gastric cancer prognosis (P < 0.05), whereas no such association was observed for YAP expression. Bioinformatics analysis demonstrated a significant correlation between the expressions of Met and YAP; both proteins were highly expressed in gastric cancer patients accompanied by markedly reduced survival time. Conclusion: The expressions of Met and YAP are closely associated with the survival outcomes as well as clinicopathological features in patients with gastric cancer. Moreover, our findings highlight that Met serves as an independent prognostic factor for gastric cancer.

4.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656551

RESUMO

Acetyl-CoAacyltransferase2 (ACAA2) is a key enzyme in the fatty acid oxidation pathway that catalyzes the final step of mitochondrial ß oxidation, which plays an important role in fatty acid metabolism. The expression of ACAA2 is closely related to the occurrence and malignant progression of tumors. However, the function of ACAA2 in ovarian cancer is unclear. The expression level and prognostic value of ACAA2 were analyzed by databases. Gain and loss of function were carried out to explore the function of ACAA2 in ovarian cancer. RNA-seq and bioinformatics methods were applied to illustrate the regulatory mechanism of ACAA2. ACAA2 overexpression promoted the growth, proliferation, migration, and invasion of ovarian cancer, and ACAA2 knockdown inhibited the malignant progression of ovarian cancer as well as the ability of subcutaneous tumor formation in nude mice. At the same time, we found that OGT can induce glycosylation modification of ACAA2 and regulate the karyoplasmic distribution of ACAA2. OGT plays a vital role in ovarian cancer as a function of oncogenes. In addition, through RNA-seq sequencing, we found that ACAA2 regulates the expression of DIXDC1. ACAA2 regulated the malignant progression of ovarian cancer through the WNT/ß-Catenin signaling pathway probably. ACAA2 is an oncogene in ovarian cancer and has the potential to be a target for ovarian cancer therapy.

5.
Surg Endosc ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627257

RESUMO

BACKGROUND: The role of minimally invasive surgery using robotics versus laparoscopy in resectable gastric cancer patients with a high body mass index (BMI) remains controversial. METHODS: A total of 482 gastric adenocarcinoma patients with BMI ≥ 25 kg/m2 who underwent minimally invasive radical gastrectomy between August 2016 and December 2019 were retrospectively analyzed, including 109 cases in the robotic gastrectomy (RG) group and 321 cases in the laparoscopic gastrectomy (LG) group. Propensity score matching (PSM) with a 1:1 ratio was performed, and the perioperative outcomes, lymph node dissection, and 3-year overall survival (OS) and disease-free survival (DFS) rates were compared. RESULTS: After PSM, 109 patients were included in each of the RG and LG groups, with balanced baseline characteristics. Compared with the LG group, the RG group had similar intraoperative estimated blood loss [median (IQR) 30 (20-50) vs. 35 (30-59) mL, median difference (95%CI) - 5 (- 10 to 0)], postoperative complications [13.8% vs. 18.3%, OR (95%CI) 0.71 (0.342 to 1.473)], postoperative recovery, total harvested lymph nodes [(34.25 ± 13.43 vs. 35.44 ± 14.12, mean difference (95%CI) - 1.19 (- 4.871 to 2.485)] and textbook outcomes [(81.7% vs. 76.1%, OR (95%CI) 1.39 (0.724 to 2.684)]. Among pathological stage II-III patients receiving chemotherapy, the initiation of adjuvant chemotherapy in the RG group was similar to that in the LG group [median (IQR): 28 (25.5-32.5) vs. 32 (27-38.5) days, median difference (95%CI) - 3 (- 6 to 0)]. The 3-year OS (RG vs. LG: 80.7% vs. 81.7%, HR = 1.048, 95%CI 0.591 to 1.857) and DFS (78% vs. 76.1%, HR = 0.996, 95%CI 0.584 to 1.698) were comparable between the two groups. CONCLUSION: RG conferred comparable lymph node dissection, postoperative recovery, and oncologic outcomes in a selected cohort of patients with BMI ≥ 25 kg/m2.

6.
Biomed Environ Sci ; 37(2): 187-195, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582981

RESUMO

Objective: Combination immunotherapy strategies targeting OX40, a co-stimulatory molecule that can enhance antitumor immunity by modulating the proliferation, differentiation, and effector function of tumor-infiltrating T cells, have attracted much attention for their excellent therapeutic effects. In this study, we aimed to evaluate the antitumor efficacy of combined anti-OX40 and hepatitis B core virus-like particles (HBc VLPs) therapy using a mouse colon cancer model. Methods: Humanized B-hOX40 mice were injected subcutaneously with MC38 colon tumor cells and treated with HBc VLPs+anti-hOX40 antibody. Tumor growth was monitored. Flow cytometric analysis was performed to evaluate the populations of T cell subsets in the tumors. Results: The combination of anti-OX40 with HBc VLPs resulted in a significant delay in tumor growth, suggesting that a potent antitumor immunity was induced by the combination therapy. Further studies revealed that HBc VLPs+anti-OX40 treatment induced a significant increase in effector T cells (Teffs) and a significant decrease in regulatory T cells (Tregs) in the tumor microenvironment (TME), which accounted for the synergistic antitumor effect of anti-OX40 in combination with HBc VLPs. Conclusion: Combination therapy of anti-hOX40 and HBc VLPs provides synergistic antitumor activity in colon cancer-bearing mice, which may represent a potential design strategy for cancer immunotherapy.


Assuntos
Neoplasias do Colo , Imunoterapia , Animais , Imunoterapia/métodos , Modelos Animais de Doenças , Linfócitos T Reguladores , Neoplasias do Colo/terapia , Diferenciação Celular , Microambiente Tumoral
7.
Eur J Heart Fail ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587090

RESUMO

AIMS: Patients with heart failure (HF) and preserved ejection fraction (HFpEF) have a particularly high prevalence of comorbidities, often necessitating treatment with many medications. The aim of this study was to evaluate the association between polypharmacy status and outcomes in PARAGON-HF. METHODS AND RESULTS: In this post hoc analysis, baseline medication status was available in 4793 of 4796 patients included in the primary analysis of PARAGON-HF. The effects of sacubitril/valsartan, compared with valsartan, were assessed according to the number of medications at baseline: 683 non-polypharmacy (<5 medications); 2750 polypharmacy (5-9 medications), and 1360 hyper-polypharmacy (≥10 medications). The primary outcome was total HF hospitalizations and cardiovascular deaths. Patients with hyper-polypharmacy were older, had more severe limitations due to HF (worse New York Heart Association class and Kansas City Cardiomyopathy Questionnaire scores), and had greater comorbidity. The non-adjusted risk of the primary outcome was significantly higher in patients taking more medications, and similar trends were seen for HF hospitalization and cardiovascular and all-cause death. The effect of sacubitril/valsartan versus valsartan on the primary outcome from the lowest to highest polypharmacy category was (as a rate ratio): 1.19 (0.76-1.85), 0.94 (0.77-1.15), and 0.77 (0.61-0.96) (pinteraction = 0.16). Treatment-related adverse events were more common in patients in the higher polypharmacy categories but not more common with sacubitril/valsartan, versus valsartan, in any polypharmacy category. CONCLUSIONS: Polypharmacy is very common in patients with HFpEF, and those with polypharmacy have worse clinical status and a higher rate of non-fatal and fatal outcomes. The benefit of sacubitril/valsartan was not diminished in patients taking a larger number of medications at baseline.

8.
Reprod Sci ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653857

RESUMO

Studies have highlighted the significant role of focal adhesion signaling in cancer. Nevertheless, its specific involvement in the pathogenesis of endometrial cancer and its clinical significance remains uncertain. We analyzed TCGA-UCEC and GSE119041 datasets with corresponding clinical data to investigate focal adhesion-related gene expression and their clinical significance. A signature, "FA-riskScore," was developed using LASSO regression in the TCGA cohort and validated in the GSE dataset. The FA-riskScore was compared with four existing models in terms of their prediction performance. We employed univariate and multivariate Cox regression analyses towards FA-riskScore to assess its independent prognostic value. A prognostic evaluation nomogram based on our model and clinical indexes was established subsequently. Biological and immune differences between high- and low-risk groups were explored through functional enrichment, PPI network analysis, mutation mining, TME evaluation, and single-cell analysis. Sensitivity tests on commonly targeted drugs were performed on both groups, and Connectivity MAP identified potentially effective molecules for high-risk patients. qRT-PCR validated the expressions of FA-riskScore genes. FA-riskScore, based on FN1, RELN, PARVG, and PTEN, indicated a poorer prognosis for high-risk patients. Compared with published models, FA-riskScore achieved better and more stable performance. High-risk groups exhibited a more challenging TME and suppressive immune status. qRT-PCR showed differential expression in FN1, RELN, and PTEN. Connectivity MAP analysis suggested that BU-239, potassium-canrenoate, and tubocurarine are effective for high-risk patients. This study introduces a novel prognostic model for endometrial cancer and offers insights into focal adhesion's role in cancer pathogenesis.

9.
Cancer Lett ; 592: 216903, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38670307

RESUMO

High levels of acetyl-CoA are considered a key metabolic feature of metastatic cancers. However, the impacts of acetyl-CoA metabolic accumulation on cancer microenvironment remodeling are poorly understood. In this study, using human hepatocellular carcinoma (HCC) tissues and orthotopic xenograft models, we found a close association between high acetyl-CoA levels in HCCs, increased infiltration of tumor-associated neutrophils (TANs) in the cancer microenvironment and HCC metastasis. Cytokine microarray and enzyme-linked immunosorbent assays (ELISA) revealed the crucial role of the chemokine (C-X-C motif) ligand 1(CXCL1). Mechanistically, acetyl-CoA accumulation induces H3 acetylation-dependent upregulation of CXCL1 gene expression. CXCL1 recruits TANs, leads to neutrophil extracellular traps (NETs) formation and promotes HCC metastasis. Collectively, our work linked the accumulation of acetyl-CoA in HCC cells and TANs infiltration, and revealed that the CXCL1-CXC receptor 2 (CXCR2)-TANs-NETs axis is a potential target for HCCs with high acetyl-CoA levels.

10.
Open Med (Wars) ; 19(1): 20240929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584831

RESUMO

Disulfidptosis was recently reported to be caused by abnormal disulfide accumulation in cells with high SLC7A11 levels subjected to glucose starvation, suggesting that targeting disulfidptosis was a potential strategy for cancer treatment. We analyzed the relationships between gene expression and mutations and prognoses of patients. In addition, the correlation between gene expression and immune cell infiltration was explored. The potential regulatory mechanisms of these genes were assessed by investigating their related signaling pathways involved in cancer, their expression patterns, and their cellular localization. Most cancer types showed a negative correlation between the gene-set variation analysis (GSVA) scores and infiltration of B cells and neutrophils, and a positive correlation between GSVA scores and infiltration of natural killer T and induced regulatory T cells. Single-cell analysis revealed that ACTB, DSTN, and MYL6 were highly expressed in different bladder urothelial carcinoma subtypes, but MYH10 showed a low expression. Immunofluorescence staining showed that actin cytoskeleton proteins were mainly localized in the actin filaments and plasma membrane. Notably, IQGAP1 was localized in the cell junctions. In conclusion, this study provided an overview of disulfidptosis-related actin cytoskeleton genes in pan-cancer. These genes were associated with the survival of patients and might be involved in cancer-related pathways.

11.
Int J Ophthalmol ; 17(4): 761-766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638243

RESUMO

AIM: To evaluate scleral buckling (SB) surgery using a non-contact wide-field viewing system and 23-gauge intraocular illumination for the treatment of rhegmatogenous retinal detachment in silicone oil (SO)-filled eyes. METHODS: Totally 9 patients (9 eyes) with retinal detachment in SO-filled eyes were retrospectively analyzed. All patients underwent non-contact wide-field viewing system-assisted buckling surgery with 23-gauge intraocular illumination. SO was removed at an appropriate time based on recovery. The patients were followed up for at least 3mo after SO removal. Retinal reattachment, complications, visual acuity and intraocular pressure (IOP) before and after surgery were observed. RESULTS: Patients were followed up for a mean of 8.22mo (3-22mo) after SO removal. All patients had retinal reattachment. At the final follow-up, visual acuity showed improvement for 8 patients, and no change for 1 patient. The IOP was high in 3 patients before surgery, but it stabilized after treatment; it was not affected in the other patients. None of the patients had infections, hemorrhage, anterior ischemia, or any other complication. CONCLUSION: This new non-contact wide-field viewing system-assisted SB surgery with 23-gauge intraocular illumination is effective and safe for retinal detachment in SO-filled eyes.

12.
Cell Death Discov ; 10(1): 134, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472168

RESUMO

Endoplasmic reticulum (ER) stress can trigger various cell death mechanisms beyond apoptosis, providing promise in cancer treatment. Oncosis, characterized by cellular swelling and increased membrane permeability, represents a non-apoptotic form of cell death. In our study, we discovered that Arnicolide D (AD), a natural sesquiterpene lactone compound, induces ER stress-mediated oncosis in hepatocellular carcinoma (HCC) cells, and this process is reactive oxygen species (ROS)-dependent. Furthermore, we identified the activation of the PERK-eIF2α-ATF4-CHOP pathway during ER stress as a pivotal factor in AD-induced oncosis. Notably, the protein synthesis inhibitor cycloheximide (CHX) was found to effectively reverse AD-induced oncosis, suggesting ATF4 and CHOP may hold crucial roles in the induction of oncosis by AD. These proteins play a vital part in promoting protein synthesis during ER stress, ultimately leading to cell death. Subsequent studies, in where we individually or simultaneously knocked down ATF4 and CHOP in HCC cells, provided further confirmation of their indispensable roles in AD-induced oncosis. Moreover, additional animal experiments not only substantiated AD's ability to inhibit HCC tumor growth but also solidified the essential role of ER stress-mediated and ROS-dependent oncosis in AD's therapeutic potential. In summary, our research findings strongly indicate that AD holds promise as a therapeutic agent for HCC by its ability to induce oncosis.

13.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521789

RESUMO

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Assuntos
Diabetes Mellitus Tipo 2 , Substância Branca , Humanos , Encéfalo , Substância Cinzenta , Imageamento por Ressonância Magnética/métodos , Substância Branca/fisiologia , Análise da Randomização Mendeliana
14.
Heliyon ; 10(6): e27427, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38501008

RESUMO

Background: The predominant feature of cancer cells during the process of carcinogenesis is the inclination towards glycolytic metabolism rather than mitochondrial oxidative phosphorylation. Nevertheless, there is a scarcity of research investigating the correlation between bladder cancer and mitochondrial energy metabolism. Methods: A qPCR array comprising 90 genes associated with mitochondrial oxidative phosphorylation was employed to discern metabolic disparities between three sets of bladder cancer tissue and adjacent normal tissue. Wound healing and transwell assays were utilized to assess cell migration and invasion capabilities, respectively. Colony formation assays were conducted to ascertain the tumorigenic potential of the cells. The proliferative capacity of the cells was examined through in vitro CCK-8 assays. Additionally, nude mouse models were established to evaluate the impact of bladder tumor cells on in vivo proliferation. The Seahorse XFe96 Analyzer was utilized to quantify mitochondrial oxidative phosphorylation, while the levels of glucose-6-phosphate and pyruvate were assessed to evaluate glycolysis. Results: Examination of qPCR array data demonstrated a noteworthy inhibition of mitochondrial oxidative phosphorylation in bladder cancer tissue, as evidenced by the down-regulation of a majority of genes associated with mitochondrial energy metabolism. Notably, GADD45B may potentially exert a significant influence on bladder cancer development, warranting further investigation. The down-regulation of GADD45B in bladder cancer cells resulted in impaired mitochondrial respiration and elevated levels of glycolysis, thereby enhancing cell migration and invasion. Conversely, up-regulation of GADD45B had the opposite effect. Furthermore, over-expression of GADD45B inhibited tumor proliferation and tumorigenesis in both in vitro and in vivo settings. Conclusion: These findings from our study indicate that the down-regulation of GADD45B promotes the shift of cell mitochondrial oxidative phosphorylation towards glycolysis, thereby facilitating the progression of bladder cancer.

15.
BMC Genomics ; 25(1): 301, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515015

RESUMO

BACKGROUND: Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS: Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS: This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.


Assuntos
Deficiências de Ferro , Ferro , Gravidez , Feminino , Animais , Ratos , Masculino , Ferro/metabolismo , Cromatina/genética , Cromatina/metabolismo , Animais Recém-Nascidos , Ratos Sprague-Dawley , Epigênese Genética , Colina/farmacologia , Colina/metabolismo , Hipocampo
16.
Sci Rep ; 14(1): 7246, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538643

RESUMO

Glioblastoma (GBM) is the most common primary malignant cancer of the central nervous system. Insufficient oxygenation (hypoxia) has been linked to GBM invasion and aggression, leading to poor patient outcomes. Hypoxia induces gene expression for cellular adaptations. However, GBM is characterized by high intertumoral (molecular subtypes) and intratumoral heterogeneity (cell states), and it is not well understood to what extent hypoxia triggers patient-specific gene responses and cellular diversity in GBM. Here, we surveyed eight patient-derived GBM stem cell lines for invasion phenotypes in 3D culture, which identified two GBM lines showing increased invasiveness in response to hypoxia. RNA-seq analysis of the two patient GBM lines revealed a set of shared hypoxia response genes concerning glucose metabolism, angiogenesis, and autophagy, but also a large set of patient-specific hypoxia-induced genes featuring cell migration and anti-inflammation, highlighting intertumoral diversity of hypoxia responses in GBM. We further applied the Shared GBM Hypoxia gene signature to single cell RNA-seq datasets of glioma patients, which showed that hypoxic cells displayed a shift towards mesenchymal-like (MES) and astrocyte-like (AC) states. Interestingly, in response to hypoxia, tumor cells in IDH-mutant gliomas displayed a strong shift to the AC state, whereas tumor cells in IDH-wildtype gliomas mainly shifted to the MES state. This distinct hypoxia response of IDH-mutant gliomas may contribute to its more favorable prognosis. Our transcriptomic studies provide a basis for future approaches to better understand the diversity of hypoxic niches in gliomas.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Glioblastoma/patologia , Hipóxia/genética , Hipóxia/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Hipóxia Celular/genética
17.
Chin Med J (Engl) ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445387

RESUMO

BACKGROUND: Hypothermia therapy has been suggested to attenuate myocardial necrosis; however, the clinical implementation as a valid therapeutic strategy has failed, and new approaches are needed to translate into clinical applications. This study aimed to assess the feasibility, safety, and efficacy of a novel selective intracoronary hypothermia (SICH) device in mitigating myocardial reperfusion injury. METHODS: This study comprised two phases. The first phase of the SICH was performed in a normal porcine model for 30 minutes ( n = 5) to evaluate its feasibility. The second phase was conducted in a porcine myocardial infarction (MI) model of myocardial ischemia/reperfusion was performed by balloon occlusion of the left anterior descending coronary artery for 60 minutes and maintained for 42 days. Pigs in the hypothermia group ( n = 8) received hypothermia intervention onset reperfusion for 30 minutes and controls ( n = 8) received no intervention. All animals were followed for 42 days. Cardiac magnetic resonance analysis (5 and 42 days post-MI) and a series of biomarkers/histological studies were performed. RESULTS: The average time to lower temperatures to a steady state was 4.8 ± 0.8 s. SICH had no impact on blood pressure or heart rate and was safely performed without complications by using a 3.9 F catheter. Interleukin-6 (IL-6), tumor necrosis factor-α, C-reactive protein (CRP), and brain natriuretic peptide (BNP) were lower at 60 min post perfusion in pigs that underwent SICH as compared with the control group. On day 5 post MI/R, edema, intramyocardial hemorrhage, and microvascular obstruction were reduced in the hypothermia group. On day 42 post MI/R, the infarct size, IL-6, CRP, BNP, and matrix metalloproteinase-9 were reduced, and the ejection fraction was improved in pigs that underwent SICH. CONCLUSIONS: The SICH device safely and effectively reduced the infarct size and improved heart function in a pig model of MI/R. These beneficial effects indicate the clinical potential of SICH for treatment of myocardial reperfusion injury.

18.
Small ; : e2309537, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323716

RESUMO

Unavoidable damage to normal tissues and tumor microenvironment (TME) resistance make it challenging to eradicate breast carcinoma through radiotherapy. Therefore, it is urgent to develop radiotherapy sensitizers that can effectively reduce radiation doses and reverse the suppressive TME. Here, a novel biomimetic PEGylated Cu2 WS4 nanozyme (CWP) with multiple enzymatic activities is synthesized by the sacrificing template method to have physical radiosensitization and biocatalyzer-responsive effects on the TME. Experiment results show that CWP can improve the damage efficiency of radiotherapy on breast cancer cell 4T1 through its large X-ray attenuation coefficient of tungsten and nucleus-penetrating capacity. CWP also exhibit strong Fenton-like reactions that produced abundant ROS and GSH oxidase-like activity decreasing GSH. This destruction of redox balance further promotes the effectiveness of radiotherapy. Transcriptome sequencing reveals that CWP induced ferroptosis by regulating the KEAP1/NRF2/HMOX1/GPX4 molecules. Therefore, owing to its multiple enzymatic activities, high-atomic W elements, nucleus-penetrating, and ferroptosis-inducing capacities, CWP effectively improves the efficiency of radiotherapy for breast carcinoma in vitro and in vivo. Furthermore, CWP-mediated radiosensitization can trigger immunogenic cell death (ICD) to improve the anti-PD-L1 treatments to inhibit the growth of primary and distant tumors effectively. These results indicate that CWP is a multifunctional nano-sensitizers for radiotherapy and immunotherapy.

19.
Sci Adv ; 10(9): eadj2102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416816

RESUMO

Cytosolic double-stranded DNA surveillance by cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) signaling triggers cellular senescence, autophagy, biased mRNA translation, and interferon-mediated immune responses. However, detailed mechanisms and physiological relevance of STING-induced senescence are not fully understood. Here, we unexpectedly found that interferon regulatory factor 3 (IRF3), activated during innate DNA sensing, forms substantial endogenous complexes in the nucleus with retinoblastoma (RB), a key cell cycle regulator. The IRF3-RB interaction attenuates cyclin-dependent kinase 4/6 (CDK4/6)-mediated RB hyperphosphorylation that mobilizes RB to deactivate E2 family (E2F) transcription factors, thereby driving cells into senescence. STING-IRF3-RB signaling plays a notable role in hepatic stellate cells (HSCs) within various murine models, pushing activated HSCs toward senescence. Accordingly, IRF3 global knockout or conditional deletion in HSCs aggravated liver fibrosis, a process mitigated by the CDK4/6 inhibitor. These findings underscore a straightforward yet vital mechanism of cGAS-STING signaling in inducing cellular senescence and unveil its unexpected biology in limiting liver fibrosis.


Assuntos
Neoplasias da Retina , Retinoblastoma , Camundongos , Animais , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , DNA/metabolismo , Interferons/metabolismo
20.
Mol Biotechnol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381377

RESUMO

The pathogenesis of endometrial cancer (EC) involves the regulation of lactate dehydrogenases. However, the role and mechanism of lactate dehydrogenase-B (LDHB) in EC progression have not been studied. The mRNA levels of LDHB and malate dehydrogenase 2 (MDH2) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blotting and immunohistochemistry assays. Cell proliferation, apoptosis, and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine, transwell, and flow cytometry assay, respectively. Glycolysis was investigated using Glucose Assay Kit, CheKine™ Micro Lactate Assay Kit, and ADP/ATP ratio assay kit. An in vivo tumor formation assay was conducted to disclose the effect of LDHB on tumor growth in vivo. The associations among signal transducer and activator of transcription 3 (STAT3), LDHB, and MDH2 were predicted through JASPAR or GeneMANIA online database and identified by chromatin immunoprecipitation assay, dual-luciferase reporter assay, and co-immunoprecipitation assay. LDHB expression was increased in EC tissues and cells in comparison with normal endometrial tissues and human endometrial stromal cells. LDHB had the potential as a biomarker to predict the prognosis of EC patients. In addition, LDHB knockdown inhibited the proliferation, invasion, and glycolysis and promoted apoptosis of RL95-2 and Ishikawa cells. LDHB knockdown inhibited tumor property of Ishikawa cells in vivo. STAT3 bound to the promoter region of LDHB, and STAT3 silencing-induced effects were relieved after LDHB upregulation. LDHB interacted with and regulated MDH2 expression. Moreover, MDH2 overexpression rescued LDHB knockdown-induced effects on EC cell phenotypes. STAT3-activated LDHB promoted endometrial cancer cell malignancy by inducing MDH2 production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA